

Autonomous driving; the context for midand long-term research questions

Jan van der Waard

KIM
Netherlands Institute for
Transport Policy Analysis

Societal impact of the system at 'full automation'

- # cars and car ownership
- cars needed for peak demand
- congestion levels
- VMT
- Spatial development
- parking space
- traffic safety
- impact on environment

cars and car-ownership - an example

- ITF simulationstudy for 'imaginary' city (ITF, 2014)
- 2 autonomous driving concepts: TaxiBot en AutoVot (no low cap PT)
- Vehicles are shared
- Possible impact: 9 out of every 10 cars is not needed

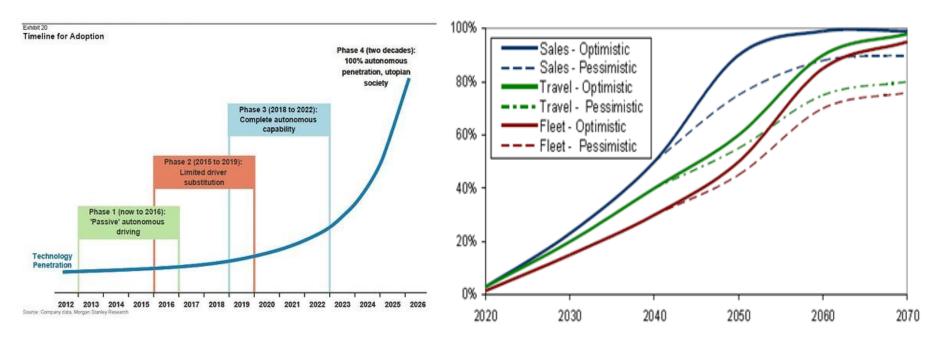
		Scenario – 24 hours	Fleet size
		Baseline (% of baseline fleet)	203,000
<u> </u>	TaxiBot Ride-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	25,917 12.8%
		High capacity transport (commuter rail, subway, BRT, LRT)	21,120 10.4%
	AutoVot Car-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	46,249 22.8 %
		High capacity transport (commuter rail, subway, BRT, LRT)	34,082 16.8%

Cars needed for peak demand – an example

- Smaller impact on # vehicles needed for peak demand (range 23% -65% less vehicles)
- Possibly a big effect on congestion levels

	Scenario – Peak hours only	Fleet size
	Baseline (% of baseline fleet)	60 000
TaxiBot Ride-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	25 867 43.1%
	High capacity transport (commuter rail, subway, BRT, LRT)	21 105 3 5.2 %
AutoVot Car-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	46 011 76.7%
	High capacity transport (commuter rail, subway, BRT, LRT)	33 975 56.6 %

VMT


 Increase as a result of decreasing bus travel and repositioning (range +6% to +89%) – no 'new' users

		Scenario – 24 hours	Car-kms (million)
		Baseline (% of baseline car-kms)	3.8
280	TaxiBot Ride-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	4.62 122.4%
		High capacity transport (commuter rail, subway, BRT, LRT)	4.01 106.4%
	AutoVot Car-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	7.15 189.4%
		High capacity transport (commuter rail, subway, BRT, LRT)	5.44 144.3%

Transition in perspective

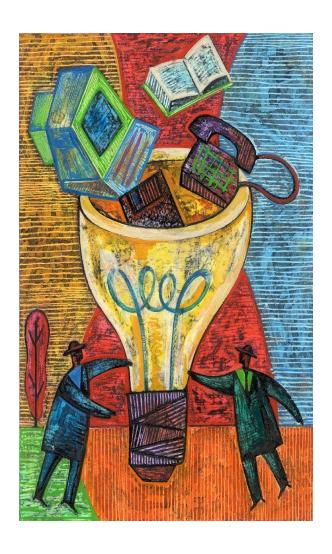
Two perspectives: technically possible / a 'new' transport system

 Transition: 'fluent' curve? Evolution, revolution or a number of well chosen 'leaps forward'?

Issues affecting transition and 'end state'

- Acceptance:
 - human-machine interaction (HMI)
 - From car ownership to car sharing
- Technology and infrastructure
- Cost
- Impacts (traffic, safety, environment) during the transition phase
- Opportunities for testing and certification
- Legal aspects
- Privacy aspects
- Ethical aspects
- Cyber security, use of data

Conclusions


- Future with high levels of 'full automation' is a valid option
- This will have huge consequences for the functioning of the system as a whole, with huge consequences in terms of societal benefits (and possibly costs)
- There are many knowledge gaps related to long term consequences and how they can / will develop:
 - Societal impact appears to be big (and possibly positive), but little knowledge is available
 - Many uncertainties in the transition towards full automation , including the 'image' of the end state.
 - Unclear what the impact of current policy interventions can be in the various transition phases and how such interventions can contribute to establish (positive) societal impacts

Research perspective

- High uncertainties combined with possibly high societal impacts trigger the need for research
- What we intend to do:
 - Reconnaissance of possible 'end states' and their potential societal impacts
 - Identification of the transition process towards these 'end states' in terms of:
 - What are potential societal impacts in these various phases?
 - What are crucial 'tilting points' between different phases?
 - What are crucial uncertainties in the various phase changes?
 - In order to identify the role policy can play regarding the various phases and phase changes?

Thank you